Looking for Math worksheets?
Check out our pre-made Math worksheets!
 Tweet

# Calculus Questions - All Grades

You can create printable tests and worksheets from these Calculus questions! Select one or more questions using the checkboxes above each question. Then click the add selected questions to a test button before moving to another page.

Previous Next
Evaluate the limit. $lim_{x->9} (x-9)/(sqrt(x)-3)$
1. Indeterminate
2. $0$
3. $3$
4. $6$
Find the derivative. $f(x) = root[5](x^7)$
1. $f'(x) = root[5](7x^6)$
2. $f'(x) = 7/5 root[5](x^2)$
3. $f'(x) = root[4](x^6)$
4. $f'(x) = root[5](x^2)$
Describe the end behavior of $f(x)=2^x-3$.
1. $"As " x -> -oo, y-> -3; \ "as " x->oo, y->oo$
2. $"As " x -> -oo, y-> oo; \ "as " x->oo, y->oo$
3. $"As " x -> -3 , y-> oo; \ "as " x->oo, y->oo$
4. $"As " x -> -oo, y-> oo; \ "as " x->oo, y->-3$
What is the limit of $f(x)=3x^3+2x^2$ as $x$ approaches 5?
1. $lim_(x->5)f(x)=425$
2. $lim_(x->5)f(x)=452$
3. $lim_(x->5)f(x)=542$
4. $lim_(x->5)f(x)=245$
What is the derivative of $f(x)=3x^3+2x^2$?
1. $f'(x)=9x^2+4x$
2. $f'(x)=3x^2+2x$
3. $f'(x)=0$
4. $f'(x)=12x^2+6x$
Differentiate. $f(x) = (4x^100)/25$
1. $f'(x) = (4x^99)/25$
2. $f'(x) = (8x^10) / 5$
3. $f'(x) = x^99 / 625$
4. $f'(x) = 16x^99$
On $f(x)=2x^5+x^3-3x$
1. $(-0.65,1.4)$ is a relative and absolute maximum.
2. $(0.65,-1.4)$ is a relative and absolute minimum.
3. $(-0.65,1.4)$ is a relative maximum.
4. $(0.65,-1.4)$ is a relative minimum.
5. Both A and B.
6. Both C and D.
7. None of the above.
Find the derivative. $f(x) = 2x^0.4 - 8x^(-0.02)$
1. $f'(x) = 2x^(-0.4) - 8x^(-1.02)$
2. $f'(x) = 0.8x^(-0.6) + 0.16x^(-1.02)$
3. $f'(x) = 2 + 0.16x^(-1.02)$
4. $f'(x) = 0.5x^(-0.6) + 0.4 x^(-1.02)$
On what intervals is the function $f(x)=3x^3+2x^2$ increasing or decreasing?
1. Increasing: $(-oo,-4/9) uu (0, oo)$, decreasing: $(-4/9, 0)$
2. Increasing: $(-oo,-4/9)$, decreasing: $(-4/9, 0)$
3. Increasing: $(-oo,0) uu (-4/9, oo)$, decreasing: $(-4/9, 0)$
4. Increasing: $(-4/9, 0)$, decreasing: $(-oo,-4/9) uu (0, oo)$
Evaluate the limit. $lim_{x->0} ((x-5)^2-25)/x$
1. Does not Exist
2. $-10$
3. $oo$
4. $0$
What are all the values of $x$ for which the function $f$ defined by $f(x)=x^3+3x^2-9x+7$ is increasing?
1. $-3< x<1$
2. $-1< x< 1$
3. $x<-3$ and $x>1$
4. $x<-1$ and $x>3$
5. All real numbers
Find the intervals of increase and decrease for the following function. $f(x) = sqrt(3x^2 - 9x + 6)$
1. Increasing on $(3/2,oo)$ and decreasing on $(-oo, 3/2)$
2. Increasing on $(2,oo)$ and decreasing on $(-oo,1)$
3. Increasing on $(3/2,oo)$
4. Increasing on $(2,oo)$
$f(x)=x^2 e^(-x^2)$
1. Increasing: $(-oo, -1) uu (0,1)$; decreasing: $(-1, 0) uu (1,oo)$
2. Increasing: $(-oo, 0)$; decreasing: $(0, oo)$
4. Increasing: $(-1,0) uu (1,oo)$; decreasing: $(-oo, -1) uu (0,1)$